

A Brief Note on Support Vector Machines

Saurabh Singal
Sankhyaa Research, Singapore

Acknowledgements

The author wishes to thank Prof. M. K. Singal, New Delhi and Dr M. Palaniswamy,
Melbourne for their help and encouragement.

Support Vector Machines 1 Sankhyaa Research, Singapore

A friend has heard of a hugely successful fund called the Deep Haven Fund but wants us
to check if it is an Event Driven fund or a Relative Value/ Non Directional funds. He will
not invest in event driven strategies – he will only put his money in relative value
strategies. Suppose we have run a regression on a set of hedge fund returns. Further
suppose that we have identified some of these funds as Event Driven hedge funds, and
some of the others as Relative Value hedge funds. How do we help our friend?

SVM classification will be a good tool to use. We start MATLAB, and using the swSVM
software described in Appendix 1, we proceed as follows.

% Load the regression coefficients for the hedge funds. The last column is 1 for Event Driven and –1
%for Non-Directional % Relative Value Funds. No other types of funds are included in the file inputs.txt

funds=load('funds.txt');
deephaven=load('deephaven.txt');
kerneltype='rbf';sigma=1;
dh=swSVM(funds(:,1:end-1),funds(:,end),kerneltype ,deephaven,sigma)

The MATLAB output is

dh = -1.00

We will see later how to interpret this output, which indicates that Deep Haven is a Non
Directional Relative Value fund. We suggest that our friend put his money in the Deep
Haven Fund.

Overview and Notation

The Support Vector Machine (SVM) is a technique for classification and regression.
Originally the SVM was devised for binary classification, or classifying data into two
types. Generalizations when there are more than two classes are relatively
straightforward.

In order to familiarise the reader with the problem we are trying to solve and the
terminology used, we will answer the following questions: What is Binary Classification?
What is Linear Separation? What is Non-Linear Separation? What is a Linear
Discriminant? We will show how the Support Vector Machine finds an optimal decision
boundary in the case of linearly separable data. We will then discuss how the Support
Vector Machine maps the patterns into a higher dimensional feature space such that
linear separation in the higher dimensional feature space allows for non-linear separation
in the original space. The use of kernel functions that allow this transformation will be
also illustrated. The last section discusses the applications, which SVMs are being put to.

There are two Appendices. Appendix 1 describes a set of MATLAB programs that
implements the SVM. Appendix 2 is the formulation of the Quadratic Programming
Problem, which yields the Support Vector Machine solution.

Support Vector Machines 2 Sankhyaa Research, Singapore

 Let us introduce the notation used in this note.
nR is the real n-dimensional vector space. We will use u, v, w, and x to denote points in
nR . These points are also called vectors or patterns in Machine Learning literature.

Each point belongs to one of two categories; a category is also called a class or type.

Each point ix has a label iy to denote which class ix belongs to; iy = +1 if ix belongs to
class 1 and iy = –1 if ix belongs to class 2. The choice of +1 and –1 for use as labels is
both notationally convenient and also simplifies the calculations.

• What is Binary Classification?
Binary classification, as the name suggests, means classifying data into two
categories. We are presented with some data points, or training patterns. We know
for each of them, whether the pattern belongs to the first category or the second. Next,
we are presented with some more data points but we do not know their respective
classes. These new data points are called test patterns. The task at hand is to
determine the category to which each test pattern belongs. Formally, given a set xi's
we wish to determine the corresponding yi's. We only have the knowledge of the
training patterns and their associated membership into either category. This process is
called Binary Classification.

• What is Linear Separation? What is Non-Linear Separation? What is the Linear

Discriminant?

Figure 1. Red Asterisk markers and Blue Plus markers are patterns belonging to Class 1 and 2 respectively. Each of
the three Straight Lines can separate the test patterns. This is an example of Linear Separation.

Look at Figure 1. The blue plus markers and the red asterisk markers represent training
patterns belonging to class 1 and class 2 respectively. We arbitrarily label class 1 as "+1"
and class 2 as "-1". We can draw a straight line that separates the patterns such that all
patterns on one side of the line belong to class 1 and all patterns belonging to class 2 are
on the other side of the line. In fact we can draw infinitely many such lines; we have
shown three that do the job. This is an example of linearly separable data. If we draw a

Support Vector Machines 3 Sankhyaa Research, Singapore

line that separates the two classes and are now asked to classify a new pattern, we will
examine on which side of the line the pattern falls and classify it accordingly.

 The notion of linear separation can be generalised to higher dimensions. In three
dimensions, data that can be separated by a plane are linearly separable, for example.

Obviously, not all data are linearly separable. Figures 4 and 6 shown in later pages of this
note are examples of points that are not linearly separable. Figure 6 shows a solid
magenta curve that separates the patterns. Separation of points by a curve, which is not a
straight line, is called non-linear separation.

The Linear Discriminant

A discriminant function is a function that lets us discriminate between different patterns.
If u and v are two patterns and g() is a discriminant function, then knowledge of g(u) and
g(v) will help us determine whether u and v are in the same class or not. If the said
function is linear in the components of x, then it is called a linear discriminant. More
formally, consider the function g(), g(x)=wTx + b=0.

Here, the vector w is called the weight vector and it has the same dimensions as x.
Knowing the weight vector w and the constant parameter b, (called bias term), any
pattern x = (x1, x2…xn) can be classified as belonging to class 1 or class 2 according to
the following rule:

If wTx + b>=0, classify x as belonging to class 1
If wTx + b<0, classify x as belonging to class 2

In the case of two-dimensional x and w, wTx + b=0 defines a straight line. Points on one
side of this straight line will be classified as belonging to class 1; points on the other side
of this line will be classified as belonging to class 2.

But there are an infinite number of straight lines that can linearly separate the data points;
we can vary b to get parallel lines that will do the job. So we need to determine the "best"
or optimal w and b.

To choose "good" w and b, we measure the distance r(x) of x from the decision surface
g(x)=0. The distance r, of a point x from the plane P specified by (w, b) is

r(x;w,b) = |g(x)|/||w|| = |wTx + b|/||w||

When we talk of the distance from a point to a plane we mean the distance from x to the
nearest point xp that lies on the plane P.

Let us first introduce the term margin of separation, which we will denote by M. The
margin of separation measures the distance between the two classes. It is shown in
Appendix 2 that M=2/||w||

Support Vector Machines 4 Sankhyaa Research, Singapore

The optimal separating hyperplane separates the two classes and maximizes the
distance to the closest point from either class. This provides a unique solution to the
separating hyperplane problem. By maximizing the margin between the classes, it leads
to better classification.

 Classification in the Linearly Separable Case.

Let us consider the problem of binary classification when the data are linearly separable.
We are going to end up with a model which is easy to implement and very fast to
compute. It will be straightforward to extend the model to case when the data are not
linearly separable. Starting with the simpler, linearly separable case allows us to gain an
understanding of the model quickly.

Suppose we have k training patterns, (x1, x2, … , xk) and their labels (y1, y2, … , yk).
 n , { 1, 1}y∈ ∈ + −x R
Let us take n=2 for ease of visualization. We have shown two figures (Figure 1 and
Figure 2), which show a scatter plot of the same data. The red star markers are patterns
belonging to class 1 (or y = 1). The black plus markers are patterns belonging to class 2
(or y = -1). Each of the figures shows a solid line that acts as the separating hyperplane.

Obviously, there are many possible hyperplanes (straight lines) that can separate the data.
Which is the one we should use? We want to choose a hyperplane that generalises well so
that when the future patterns need to be classified, we do a good job. The key idea behind
Support Vector Machines is that out of all the hyperplanes that can do the job (i.e.,
minimise training error) we should choose the one that has the maximal margin.

Figure 3: Separating Hyperplane (solid line) with Narrower Margin. Margin is the distance between the dotted lines

Support Vector Machines 5 Sankhyaa Research, Singapore

Figure 3: Separating Hyperplane (solid magenta line) with Wider Margin. Margin is the distance between the dotted
lines

An SVM constructs a hyperplane g(x)= 0 that will act as a decision surface in such a way
that the margin of separation between the two classes is maximised. When we look at the
two diagrams, we can see that the second diagram shows a hyperplane with a larger
margin. Larger margin promises better performance on unseen data, in other words a
larger margin leads to better generalisation. For details see Vapnik [2] which is the
definitive work on Statistical Learning Theory. In our case, we want to find the
parameters w =[w1 w2 … wn]T and b of the decision function d(x, w, b) given as

 d(x, w, b)=wTx + b=
1

n

i i
i

w x b
=

+∑

After training is successful, using the weight vector w and the bias b, a pattern x is
classified as by examining the sign of d(x, w, b) .

If d(xp, w, b) >=0, pattern xp belongs to class 1, (yp=1)
If d(xp, w, b) <0, pattern xp belongs to class 2, (yp= -1)

The geometric interpretation is that the equation 0T b+ =w x divides the input space into
two half spaces. As our input is two dimensional, 0T b+ =w x is the equation of a straight
line and it will divide 2R22 into two half spaces, the elements of class 1 lie in one half
space and the elements of class 2 lie in the other half space. This notion is easily extended
to dimensions higher than two.

The decision boundary is a hyperplane; more precisely it is a separating hyperplane in

2R . Before we describe how the weight vector w and bias term b can be estimated, we
will introduce the concept of a canonical hyperplane. First we note that if d(x,w,b) is
separating function, then for any k>0, d(x, kw, kb) is also a correct decision function.
A hyperplane is canonical with respect to the data x if

x
1min

i

T
i

X
b

∈
+ =w x

Support Vector Machines 6 Sankhyaa Research, Singapore

As the parameters (w,b) and (kw, kb) describe the same hyperplane, it is important to
talk in terms of canonical hyperplanes. The optimal canonical hyperplane is the
canonical hyperplane with the maximal margin. The optimal canonical hyperplane will
yield the decision boundary that the Support Vector Machine seeks.

The solid magenta line in Figure 3 is the decision boundary that the SVM obtains. The
dotted green and cyan lines are the margin. Points on the margin are called Support
Vectors. The MATLAB implementation of SVM described in Appendix 1 was used for
this example.

Classification when Data are Linearly Non-Separable.

The true power of SVMs comes into play when we have data points that are not separable
by a linear decision surface. A canonical example is the XOR function (exclusive OR),
which takes a value of 0 when both its inputs are the same and takes a value of 1
otherwise. In our notation this becomes

x=(x1,x2) y
(1,1) -1
(-1,-1) -1
(1,-1) 1
(-1,1) 1

Table 1: The XOR Gate

We show this in Figure 3, where the red asterisk symbols marks the two points for which

iy =-1 and the blue plus symbol marks points for which iy = 1.

Figure 4: The XOR Gate. There is no straight line that can separate the two classes.

Support Vector Machines 7 Sankhyaa Research, Singapore

These points cannot be linearly separated, that is, we cannot draw any straight line that
will separate the classes. But there is a trick we can use; we define x3= x1.x2 and then
augment the 2 dimensional input vectors by this third number, x3. In our XOR example,
we get

x=(x1,x2,x1.x2) y
(1,1,1) -1
(-1,-1,1) -1
(1,-1,-1) 1
(-1,1,-1) 1

 Table 2: The modified XOR Gate

Now it is easy to see that these points are linearly separable in 3R ; the plane z=0 is one
of infinitely many linear decision surfaces that can separate the data points. This is
depicted in Figure 4. The blue dots are the points (1, -1,1) and (-1,1,1), corresponding to
the points in the two dimensional space for which the yi is 1. The red dots are the points
(1,1, -1) and (-1, -1, -1), corresponding to the points in the two dimensional space for
which the yi is –1.The patterns were separated by examining the sign of uv in our
example, which is a non-linear function of u and v, but is a linear function of uv. Thus a
linear separator in the feature space could act as a non-linear separator in the original
space or the data space.

Figure 5: Separation of the XOR Gate After Mapping to Higher Dimension.

This brings us to another important idea of SVMs- the use a non-linear function to map
the training vectors or data points into a higher dimensional space. This higher

Support Vector Machines 8 Sankhyaa Research, Singapore

dimensional space is called the Feature Space. We find and use a linear decision surface
in the feature space, and this allows for non-linear separation in the original space.

In our example, we used the mapping Ψ (,) (, ,)u v u v uva to map the two dimensional
pattern space to a three dimensional feature space.

The strategy that allows us to devise non-linear classifiers is to map input vectors n∈x R
into vectors z of a higher dimensional feature space F. The function that performs this
mapping will be denoted by Φ . Formally,

(), where is a mapping ;n f f n= → >z Φ x Φ  

Kernel Functions

We have shown in Appendix 2 that to find the optimal linear decision boundary, we need
to minimize

1 1

1()
2

l l

d i i j i j i j
i i

L y yα α α α
= =

= −∑ ∑ Tx x

To find a non-linear decision boundary, we have to replace
T
i jx x by T(,) = () ()i j i jK x x Φ x Φ x in the above expression.

The function K() is called a kernel function. The kernel function is allowing us to
compute an inner product in the higher dimensional feature space. Moreover, if we can
compute the inner product, ()K u, v we do not need to know or compute () and ()Φ u Φ v
themselves; we just need to be able to compute the inner product.

For a function K to have the right form as a kernel, it must satisfy a set of conditions
called the Mercer conditions, which are:

1. T() () ()K =u, v Φ u Φ v

2. () ()K K=u, v v,u

3. 2for all functions for which is integrable over []() () () 0,
b b

a a

K d dψ ψ ψ ψ≥∫ ∫ a,bu, v u v u v

Some commonly used kernel functions are listed in Table 3.

Name of Kernel Function Definition
Linear () TK =u, v u v
Polynomial of degree d () (1)T dK = +u, v u v
Gaussian Radial Basis Function (RBF)

11[() ()]

2()
T

K e
−− Σ

=
u-v u-v

u, v

Support Vector Machines 9 Sankhyaa Research, Singapore

Sigmoid () tanh[]TK b= +u, v u v

 Table 3. Some Commonly Used Kernel Functions

The SVM produces a non-linear boundary in the original pattern space by constructing a
linear boundary in a large, transformed version of the feature space.

Figure 6 presents an example of non-linear separation using the SVM. The MATLAB
programs described in Appendix 1 are used for this the computations and plotting. The
red asterisk markers in Figure 6 are patterns belonging to class 1 and the blue plus
symbols are from class 2. Using Gaussian RBF kernel, the SVM have achieved non-
linear separation. The magenta solid line is the non-linear decision boundary, and the
margin is shown by the dotted cyan and the dotted green curves. The points on the
margin are the support vectors.

.
 Figure 6: Mapping to Higher Dimensional Feature Space Using RBFs Permits Non-Linear Separation.

Applications of Support Vector Machines

Support Vector Machines are finding many uses in pattern recognition and classification
tasks. We list some of them here, but for a more detailed discussion, see Christianini [2].

The task of text categorisation refers to the classification of natural text documents into a
fixed number of predefined categories based on their content. This is important in email
filtering, web searching, sorting documents by topic and classification of news stories.

Support Vector Machines 10 Sankhyaa Research, Singapore

The automatic categorisation of images is gaining importance in medical applications.
Hand-written digit recognition was one of the first real world task on which Support
Vector Machines were tested. The problem on which the test was carried is used as a
benchmark for classification schemes. Support Vector Machines did as well on the
problem as other classification algorithms that were designed specifically for this
problem. It is remarkable that SVM performed as well as these other systems without any
detailed prior knowledge.

Bioinformatics is another area where SVMs are being applied in many different ways.
One important area of research in bioinformatics is to predict the features of a protein
based on its amino acid sequence. One approach involves relating new protein sequences
to proteins whose properties are already known. Similarity between proteins is called
Protein Homology. An SVM based protein homology detection system handily
outperformed state-of-the art protein homology detection systems.

SVMs are being used in the automatic categorisation of gene expression data from DNA
microarrays. As the volume of genomics data grows, it is becoming important to have
automated means of assigning functions to genes. SVMs are being applied very
successfully in gene expression data for classifying unseen genes and have outperformed
various systems that use Fisher's Linear Discriminant or decision trees and other less
recent techniques.

 Bibliography

[1] Christianini, Nello and John Shawe-Taylor (2000), An Introduction to Support Vector
Machines, Cambridge University Press, Cambridge.

[2] Vapnik, Vladimir N (1999), The Nature of Statistical Learning, Springer-Verlag, New
York.

Support Vector Machines 11 Sankhyaa Research, Singapore

Appendix 1: The MATLAB swSVM Software.

We have a programmed a simple SVM implementation in MATLAB. The example and
the figures in the preceding pages where obtained using this software. There are only two
choices for the kernel function that have been implemented, namely, Gaussian RBF and
Linear.

Description of the Functions.

There are five MATLAB functions, and by their function we have broken them into three
categories.

Functions for SVM Training and Classification.

There are three functions that implement the SVM- swSVM, swquad and
swSVMclassify.

The function that solves the QP for obtaining the SVM solution is swquad.

The function swSVMclassify classifies test patterns, using the solution obtained
previously by swquad.

The function swSVM is like a main function that accepts as inputs the training
patterns and their labels; the test patterns, the choice of the kernel and the sigma
parameter (only needed for the RBF kernel). It calls swquad for solving the Quadratic
Program to perform SVM separation and then calls swSVMclassify, which classifies
the test patterns. If the data are two dimensional, swSVM also plots the training
patterns, the margin and the decision boundary by calling swPlot.

Plotting Related Functions

The function swscatter does a scatter plot of the training patterns; and it outputs the
patterns of category 1 as blue plus markers and the patterns of category 2 as red
asterisk. (We assign y=1 to the patterns of category 1 and y= -1 to the patterns of
category 2, but this can be reversed with no loss of generalization). The function
swPlot is used to plot the training patterns and the decision boundary as well as the
margin of the SVM. This function uses the outputs of the swquad function. The
function swPlot calls the function swscatter.

Helper functions

There is one helper function swscale, which is called by other functions for scaling
the training patterns before plotting the margin and decision boundaries.

Support Vector Machines 12 Sankhyaa Research, Singapore

A Sample Session of the swSVM MATLAB software

We will show an example of non-linear separation using the Gaussian RBF as the kernel.
The data is the same used as in Figure 6. After obtaining the decision boundary, we will
pick two arbitrary patterns as test patterns and classify them using the SVM e have
obtained.

In the lines that follow, we will use the Courier font to denote MATLAB commands
and the Tohama font for comments. The output from MATLAB is in the Arial font

% Load the data from the file nonlin.txt
% The first two columns are the patterns and the third column contains the associated labels for each
% pattern. The label is 1 for patterns of class 1 and –1 for patterns of class 2.

data=load('nonlin.txt');

%Put the Patterns into variable x and
x=data(:,1:2);

 % Put the class labels into the variable y
 y=data(:,3);

% Put choose RBF as the choice of kernel since we will perform non-linear separation
kerneltype='rbf';

%Use Sigma =1
sigma=1;

% Let us perform a non-linear separation of the data using swquad
[W0,b0, alpha]=swquad(x,y,kerneltype,sigma);

Optimization terminated successfully.
The number of support vectors is 5
The support Vectors are points number:
 3
 7
 9
16
17

% Now we will plot the decision boundary, the margin and the training patterns.
% We use blue plus markers for class 1 patterns (y= 1) and red asterisk markers for class 2 patterns
% (y= -1)

swPlot(x,y,'rbf',alpha, W0,b0 ,sigma);

% Now let us pick two arbitrary points and try to classify them.
hold on

Support Vector Machines 13 Sankhyaa Research, Singapore

Figure 7. Non-linear Separation using Gaussian RBF Kernel. Blue Plus markers are class 1 patterns. Red
Asterisk markers are class 2 patterns. The two test patterns are shown as cyan and black filled circles.

%Choose a point (pattern1) and Plot pattern 1 in Cyan colour on the existing plot
pattern1= [-0.5, -0.3];
scatter(pattern1(1),pattern1(2), 401,'c.')

%Choose a point (pattern1) and Plot pattern 1 in Black colour on the existing plot
pattern2= [0.3, -0.8];
scatter(pattern2(1),pattern2(2), 401,'k.')

%Now store pattern1 and pattern2 as the first and second rows of the matrix test
test=[pattern1;pattern2];

% Classify test patterns
class=swSVMclassify(alpha, b0, x,y,test,kerneltype,sigma)

class =
 -1.00
 1.00

We see that pattern 1 is classified as belonging to class 2 (i.e., label = -1) and pattern 2 as class 1 (label
=1). From the positions of the cyan and black markers on the figure this is what one might expect. We
could also have done the task of finding the SVM, plotting the training patterns and decision boundary;
and classifying the test patterns by the use of the function swSVM. The results would be the same as
calling swquad, swPlot and swSVMclassify in sequence as we have shown in the preceding lines.

class =swSVM(x,y,kerneltype ,test,sigma)

Support Vector Machines 14 Sankhyaa Research, Singapore

Appendix 2: Formulation of the Quadratic Programme for the SVM

We will derive the solution for the optimal canonical separating hyperplane when the
data are linearly separable. We note that this hyperplane is a canonical separating
hyperplane with the maximal margin.

The margin 1()M = − 2 wx x .
Here the subscript w denotes the projection of the vectors 1 2and x x onto the weights
vector direction. Taking projections along w, we get

1 1

2

1 2

cos(),

cos(),
.

D

D
M D D

α
β

=

=
= −

2

x

x

where α and β are the angles between w and x1 and w and x2 respectively. We know that

Substituting, this leads to 1 2 ,
T T

M −= x w x w
w

 and as x1 and x2 are support vectors

satisfying 1, 1, 2T
j jy b j+ = =w x

we have 1 1T b+ =w x , 2 1T b+ = −w x

and finally we get 2M =
w

. (A.1)

We could also get this result using the fact that the distance D between a support vector
x1 and a canonical separating line is equal to half the margin M and therefore

2 1
2

T bMD
+

= = =
w x

w w
, from where 2M =

w
, as before. Therefore to maximise the

margin, M, we need to minimise w = 2 2 2
1 2 ... nw w w+ + .

The optimal canonical separating hyperplane with the maximal margin will specify
support vectors – that is the training points closest to the OCSH by
 (A.2)
where Nsv denotes the total number of support vectors.
At the same time, all training points must satisfy the following inequalities.

[] 1, 1 .. T
j jy b j l+ = =w x (A.3)

2

2

c o s ()

c o s ()

α

β

=

=

T
1

1

T

x w
x w

x w
x w

Support Vector Machines 15 Sankhyaa Research, Singapore

Thus to find the optimal separating hyperplane with the maximal margin, we need to
minimize w , which is the same as minimising w 2, subject to (A.3). You will
recognize that this is a standard non-linear optimisation problem with inequality
constraints, which can be solved by the method of Lagrange multipliers.

Let
1

1(, ,) { [] 1}
2

l
T

i j j
i

L b y bα α
=

= − + −∑Tw w w w x (A.4)

where the iα 's are the Lagrange multipliers. The Lagrangian L in (a.4) is to be minimized
with respect to w and b and maximized with respect to the non-negative iα 's. Instead of
solving the problem in the primal space (the space of w and b) it is more insightful to
solve the problem in the dual space (the space of the iα 's). Applying the Karush-Kuhn-
Tucker conditions, at the optimal solution (w0, b0, 0α) the derivatives of the Lagrangian
with respect to the primal variables will vanish, so that

0
10

0, or
l

i i i
i

L yα
=

∂ = =
∂ ∑w x
w

 (A.5)

10

0, or 0
l

i i
i

L y
b

α
=

∂ = =
∂ ∑ (A.6)

Applying the complementarity conditions, we have

{ [] 1} 0, 1..T
i j jy b i lα + − = =w x (A.7).

Substituting (A.5) and (A.6) into (A.4) gives us

1 1

1()
2

l l

d i i j i j i j
i i

L y yα α α α
= =

= −∑ ∑ Tx x (A.8)

We need to maximise the dual Lagrangian ()dL α with respect to the non-negative iα 's

iα >0, 1..i l= (A.9)

The dual Lagrangian ()dL α is expressed only in terms of the training data, and it depends
on the scalar product of the input training patterns - xixj . This is very important because
we will see that instead of using xixj we will be able to use other types of inner products.

Support Vector Machines 16 Sankhyaa Research, Singapore

Our formulation is a standard Quadratic Programming problem. We can put this in matrix
notation.

Maximize () 0.5 T T

dL α = − +α Hα f α (QP.1)

subject to

0T =y α , (QP.2)

≥α 0 (QP.3)

where H denotes the Hessian matrix (,or T

ij i j i j i j i jy y x x y y=H x x) and f=1 is a unit
vector; f= [1 1 1… 1].

After we find out the solution 0α of the QP, we can find the parameters w0 and b, as
follows

0 0
1

, 1..
l

i i i
i

y i lα
=

= =∑w x (A.10)

0
1 10 , 1..

svN
T

s sv
s isv s

b s N
N y=

  
= − =     

∑ x w (A.11)

When usng a kernel function K, we will replace T

i jx x by T(,) = () ()i j i jK x x Φ x Φ x in A.8
and subsequently.

