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A friend has heard of a hugely successful fund called the Deep Haven Fund but wants us 
to check if it is an Event Driven fund or a Relative Value/ Non Directional funds. He will 
not invest in event driven strategies – he will only put his money in relative value 
strategies. Suppose we have run a regression on a set of hedge fund returns. Further 
suppose that we have identified some of these funds as Event Driven hedge funds, and 
some of the others as Relative Value hedge funds. How do we help our friend? 
 
SVM classification will be a good tool to use. We start MATLAB, and using the swSVM 
software described in Appendix 1, we proceed as follows. 
 

%  Load the regression coefficients for the hedge funds. The last column is 1 for Event Driven and –1 
%for Non-Directional % Relative Value Funds. No other types of funds are included in the file inputs.txt 
 
funds=load('funds.txt');  
deephaven=load('deephaven.txt'); 
kerneltype='rbf';sigma=1; 
dh=swSVM(funds(:,1:end-1),funds(:,end),kerneltype ,deephaven,sigma) 
 
 

The MATLAB output is  
 
dh =       -1.00 
 

We will see later how to interpret this output, which indicates that Deep Haven is a Non 
Directional Relative Value fund. We suggest that our friend put his money in the Deep 
Haven Fund.  

 

Overview and Notation 
 
The Support Vector Machine (SVM) is a technique for classification and regression.  
Originally the SVM was devised for binary classification, or classifying data into two 
types. Generalizations when there are more than two classes are relatively 
straightforward.  

In order to familiarise the reader with the problem we are trying to solve and the 
terminology used, we will answer the following questions: What is Binary Classification? 
What is Linear Separation? What is Non-Linear Separation? What is a Linear 
Discriminant? We will show how the Support Vector Machine finds an optimal decision 
boundary in the case of linearly separable data. We will then discuss how the Support 
Vector Machine maps the patterns into a higher dimensional feature space such that 
linear separation in the higher dimensional feature space allows for non-linear separation 
in the original space. The use of kernel functions that allow this transformation will be 
also illustrated. The last section discusses the applications, which SVMs are being put to. 

There are two Appendices. Appendix 1 describes a set of MATLAB programs that 
implements the SVM.  Appendix 2 is the formulation of the Quadratic Programming 
Problem, which yields the Support Vector Machine solution. 
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 Let us introduce the notation used in this note. 
nR  is the real n-dimensional vector space. We will use u, v, w, and x to denote points in 
nR . These points are also called vectors or patterns in Machine Learning literature. 

 
Each point belongs to one of two categories; a category is also called a class or type.  
 
Each point ix  has a label iy  to denote which class ix belongs to; iy   = +1 if ix  belongs to 
class 1 and iy  = –1 if ix belongs to class 2. The choice of  +1 and –1 for use as labels is 
both notationally convenient and also simplifies the calculations. 
 

• What is Binary Classification? 
Binary classification, as the name suggests, means classifying data into two 
categories. We are presented with some data points, or training patterns. We know 
for each of them, whether the pattern belongs to the first category or the second. Next, 
we are presented with some more data points but we do not know their respective 
classes. These new data points are called test patterns. The task at hand is to 
determine the category to which each test pattern belongs. Formally, given a set xi's 
we wish to determine the corresponding yi's. We only have the knowledge of the 
training patterns and their associated membership into either category. This process is 
called Binary Classification.   
 
• What is Linear Separation? What is Non-Linear Separation? What is the Linear 

Discriminant? 

 
Figure 1. Red Asterisk markers and Blue Plus markers are patterns belonging to Class 1 and 2 respectively. Each of 
the three Straight Lines can separate the test patterns. This is an example of Linear Separation. 
 
Look at Figure 1. The blue plus markers and the red asterisk markers represent training 
patterns belonging to class 1 and class 2 respectively. We arbitrarily label class 1 as "+1" 
and class 2 as "-1". We can draw a straight line that separates the patterns such that all 
patterns on one side of the line belong to class 1 and all patterns belonging to class 2 are 
on the other side of the line. In fact we can draw infinitely many such lines; we have 
shown three that do the job. This is an example of linearly separable data. If we draw a 
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line that separates the two classes and are now asked to classify a new pattern, we will 
examine on which side of the line the pattern falls and classify it accordingly. 
 
 The notion of linear separation can be generalised to higher dimensions. In three 
dimensions, data that can be separated by a plane are linearly separable, for example. 
 
Obviously, not all data are linearly separable. Figures 4 and 6 shown in later pages of this 
note are examples of points that are not linearly separable. Figure 6 shows a solid 
magenta curve that separates the patterns. Separation of points by a curve, which is not a 
straight line, is called non-linear separation.  

The Linear Discriminant 
 
A discriminant function is a function that lets us discriminate between different patterns. 
If u and v are two patterns and g()  is a discriminant function, then knowledge of g(u) and 
g(v) will help us  determine whether u and v are in the same class or not. If the said 
function is linear in the components of x, then it is called a linear discriminant. More 
formally, consider the function g(), g(x)=wTx + b=0. 
 
Here, the vector w is called the weight vector and it has the same dimensions as x. 
Knowing the weight vector w and the constant parameter b, (called bias term), any 
pattern x = (x1, x2…xn) can be classified as belonging to class 1 or class 2 according to 
the following rule: 
  
If wTx + b>=0, classify x as belonging to class 1 
If wTx + b<0,   classify x as belonging  to class 2 
 
In the case of two-dimensional x and w, wTx + b=0   defines a straight line. Points on one 
side of this straight line will be classified as belonging to class 1; points on the other side 
of this line will be classified as belonging to class 2. 
 
But there are an infinite number of straight lines that can linearly separate the data points; 
we can vary b to get parallel lines that will do the job. So we need to determine the "best" 
or optimal w and b.  
 
To choose "good" w and b, we measure the distance r(x) of x from the decision surface 
g(x)=0. The distance r, of a point x from the plane P specified by (w, b) is  
 
r(x;w,b) = |g(x)|/||w|| = |wTx + b|/||w|| 
 
When we talk of the distance from a point to a plane we mean the distance from x to the 
nearest point xp that lies on the plane P. 
 
Let us first introduce the term margin of separation, which we will denote by M. The 
margin of separation measures the distance between the two classes. It is shown in 
Appendix 2 that M=2/||w|| 
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The optimal separating hyperplane   separates the two classes and maximizes the 
distance to the closest point from either class. This provides a unique solution to the 
separating hyperplane problem. By maximizing the margin between the classes, it leads 
to better classification. 
 

 Classification in the Linearly Separable Case. 
 

Let us consider the problem of binary classification when the data are linearly separable. 
We are going to end up with a model which is easy to implement and very fast to 
compute.  It will be straightforward to extend the model to case when the data are not 
linearly separable. Starting with the simpler, linearly separable case allows us to gain an 
understanding of the model quickly. 
 
Suppose we have k training patterns, (x1, x2, … , xk) and their labels (y1, y2, … , yk). 
  n , { 1, 1}y∈ ∈ + −x R  
Let us take n=2 for ease of visualization.  We have shown two figures (Figure 1 and 
Figure 2), which show a scatter plot of the same data. The red star markers are patterns 
belonging to class 1 (or y = 1). The black plus markers are patterns belonging to class 2 
(or y = -1). Each of the figures shows a solid line that acts as the separating hyperplane. 
 
Obviously, there are many possible hyperplanes (straight lines) that can separate the data. 
Which is the one we should use? We want to choose a hyperplane that generalises well so 
that when the future patterns need to be classified, we do a good job. The key idea behind 
Support Vector Machines is that out of all the hyperplanes that can do the job (i.e., 
minimise training error) we should choose the one that has the maximal margin.  

 
Figure 3: Separating Hyperplane (solid line) with Narrower Margin. Margin is the distance between the dotted lines 
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Figure 3: Separating Hyperplane (solid magenta line) with Wider Margin. Margin is the distance between the dotted 
lines 
 
An SVM constructs a hyperplane g(x)= 0 that will act as a decision surface in such a way 
that the margin of separation between the two classes is maximised. When we look at the 
two diagrams, we can see that the second diagram shows a hyperplane with a larger 
margin. Larger margin promises better performance on unseen data, in other words   a 
larger margin leads to better generalisation. For details see Vapnik [2] which is the 
definitive work on Statistical Learning Theory. In our case, we want to find the 
parameters w =[w1 w2 … wn ]T and b of the decision function     d(x, w, b) given as 

 d(x, w, b)=wTx + b=
1

n

i i
i

w x b
=

+∑  

  
After training is successful, using the weight vector w and the bias b, a pattern x is 
classified as by examining the sign of d(x, w, b) .  
 
If d(xp, w, b) >=0, pattern xp belongs to class 1, (yp=1) 
If d(xp, w, b) <0, pattern xp belongs to class 2, (yp= -1) 
 
The geometric interpretation is that the equation 0T b+ =w x divides the input space into 
two half spaces. As our input is two dimensional, 0T b+ =w x  is the equation of a straight 
line and it will divide 2R22 into two half spaces, the elements of class 1 lie in one half 
space and the elements of class 2 lie in the other half space. This notion is easily extended 
to dimensions higher than two. 
 
The decision boundary is a hyperplane; more precisely it is a separating hyperplane in 

2R . Before we describe how the weight vector w and bias term b can be estimated, we 
will introduce the concept of a canonical hyperplane. First we note that if d(x,w,b) is 
separating function, then for any k>0,  d(x, kw, kb) is also a correct decision function.  
A hyperplane is canonical with respect to the data x if 
 

x
1min

i

T
i

X
b

∈
+ =w x  
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As the parameters (w,b) and (kw, kb) describe the same hyperplane,  it is important to 
talk in terms of canonical hyperplanes. The optimal canonical hyperplane is the 
canonical hyperplane with the maximal margin. The optimal canonical hyperplane will 
yield the decision boundary that the Support Vector Machine seeks. 
 
The solid magenta line in Figure 3 is the decision boundary that the SVM obtains. The 
dotted green and cyan lines are the margin. Points on the margin are called Support 
Vectors. The MATLAB implementation of SVM described in Appendix 1 was used for 
this example. 

Classification when Data are Linearly Non-Separable. 
 
The true power of SVMs comes into play when we have data points that are not separable 
by a linear decision surface. A canonical example is the XOR function (exclusive OR), 
which takes a value of 0 when both its inputs are the same and takes a value of 1 
otherwise. In our notation this becomes 
 

x=(x1,x2)  y 
(1,1)  -1 
(-1,-1)   -1 
(1,-1)   1 
(-1,1)    1 

        
Table 1: The XOR Gate 

        
 
 
 
 
We show this in Figure 3, where the red asterisk symbols marks the two points for which 

iy =-1 and the blue plus symbol marks points for which iy =  1. 

 
Figure 4: The XOR Gate. There is no straight line that can separate the two classes. 
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These points cannot be linearly separated, that is, we cannot draw any straight line that 
will separate the classes. But there is a trick we can use; we define x3= x1.x2 and then 
augment the 2 dimensional input vectors by this third number, x3. In our XOR example, 
we get 
 
 

x=(x1,x2,x1.x2)  y 
(1,1,1)  -1 
(-1,-1,1)   -1 
(1,-1,-1)   1 
(-1,1,-1)    1 

              
             Table 2: The modified XOR Gate 

 
Now it is easy to see that these points are linearly separable in 3R ; the plane z=0 is one 
of infinitely many linear decision surfaces that can separate the data points. This is 
depicted in Figure 4. The blue dots are the points (1, -1,1) and (-1,1,1), corresponding to 
the points in the two dimensional space for which the yi is 1. The red dots are the points 
(1,1, -1) and (-1, -1, -1), corresponding to the points in the two dimensional space for 
which the  yi is –1.The patterns were separated by examining the sign of uv in our 
example, which is a non-linear function of u and v, but is a linear function of uv. Thus a 
linear separator in the feature space could act as a non-linear separator in the original 
space or the data space.   

  
Figure 5: Separation of the XOR Gate After Mapping to Higher Dimension. 

 
This brings us to another important idea of SVMs- the use a non-linear function to map 
the training vectors or data points into a higher dimensional space. This higher 
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dimensional space is called the Feature Space. We   find and use a linear decision surface 
in the feature space, and this allows for non-linear separation in the original space. 
 
In our example, we used the mapping Ψ ( , ) ( , , )u v u v uva  to map the two dimensional 
pattern space to a three dimensional feature space. 
  
The strategy that allows us to devise non-linear classifiers is to map input vectors n∈x R  
into vectors z of a higher dimensional feature space F. The function that performs this 
mapping will be denoted by Φ . Formally, 

( ), where  is a mapping ;n f f n= → >z Φ x Φ    
 

Kernel Functions 
 
We have shown in Appendix 2 that to find the optimal linear decision boundary, we need 
to minimize 

1 1

1( )
2

l l

d i i j i j i j
i i

L y yα α α α
= =

= −∑ ∑ Tx x  

To find a non-linear decision boundary, we have to replace  
T
i jx x  by T( , ) = ( ) ( )i j i jK x x Φ x Φ x  in the above expression. 

 
The function K( ) is called a kernel function. The kernel function is allowing us to 
compute an inner product in the higher dimensional feature space. Moreover, if we can 
compute the inner product, ( )K u, v  we do not need to know or compute ( ) and ( )Φ u Φ v  
themselves; we just need to be able to compute the inner product.  
 
For a function K to have the right form as a kernel, it must satisfy a set of conditions 
called the Mercer conditions, which are: 
 
1. T( ) ( ) ( )K =u, v Φ u Φ v  
 
2. ( ) ( )K K=u, v v,u  

3. 2for all functions for which is integrable over [ ]( ) ( ) ( ) 0,     
b b

a a

K d dψ ψ ψ ψ≥∫ ∫ a,bu, v u v u v  

 
Some commonly used kernel functions are listed in Table 3.  
 
Name of Kernel Function Definition 
Linear   ( ) TK =u, v u v         
Polynomial of degree d   ( ) ( 1)T dK = +u, v u v  
Gaussian Radial Basis Function (RBF) 

  
11[( ) ( )]

2( )
T

K e
−− Σ

=
u-v u-v

u, v  
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Sigmoid   ( ) tanh[ ]TK b= +u, v u v  
 
 Table 3. Some Commonly Used Kernel Functions 
 
    
The SVM produces a non-linear boundary in the original pattern space by constructing a 
linear boundary in a large, transformed version of the feature space. 
 
Figure 6 presents an example of non-linear separation using the SVM. The MATLAB 
programs described in Appendix 1 are used for this the computations and plotting. The 
red asterisk markers in Figure 6 are patterns belonging to class 1 and the blue plus 
symbols are from class 2. Using Gaussian RBF kernel, the SVM have achieved non-
linear separation. The magenta solid line is the non-linear decision boundary, and the 
margin is shown by the dotted cyan and the dotted green curves. The points on the 
margin are the support vectors.   
 
 

.  
           Figure 6: Mapping to Higher Dimensional Feature Space Using RBFs Permits Non-Linear Separation.    
  
  
  

Applications of Support Vector Machines 
 
Support Vector Machines are finding many uses in pattern recognition and classification 
tasks. We list some of them here, but for a more detailed discussion, see Christianini [2].  
 
The task of text categorisation refers to the classification of natural text documents into a 
fixed number of predefined categories based on their content. This is important in email 
filtering, web searching, sorting documents by topic and classification of news stories. 
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The automatic categorisation of images is gaining importance in medical applications. 
Hand-written digit recognition was one of the first real world task on which Support 
Vector Machines were tested. The problem on which the test was carried is used as a 
benchmark for classification schemes. Support Vector Machines did as well on the 
problem as other classification algorithms that were designed specifically for this 
problem. It is remarkable that SVM performed as well as these other systems without any 
detailed prior knowledge. 
 
Bioinformatics is another area where SVMs are being applied in many different ways.  
One important area of research in bioinformatics is to predict the features of a protein 
based on its amino acid sequence. One approach involves relating new protein sequences 
to proteins whose properties are already known.  Similarity between proteins is called 
Protein Homology. An SVM based protein homology detection system handily 
outperformed state-of-the art protein homology detection systems.  
 
SVMs are being used in the automatic categorisation of gene expression data from DNA 
microarrays. As the volume of genomics data grows, it is becoming important to have 
automated means of assigning functions to genes. SVMs are being applied very 
successfully in gene expression data for classifying unseen genes and have outperformed 
various systems that use Fisher's Linear Discriminant or decision trees and other less 
recent techniques. 

 Bibliography 
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Appendix 1: The MATLAB  swSVM Software. 
 
We have a programmed a simple SVM implementation in MATLAB. The example and 
the figures in the preceding pages where obtained using this software. There are only two 
choices for the kernel function that have been implemented, namely, Gaussian RBF and 
Linear. 
 

Description of the Functions. 
  
There are five MATLAB functions, and by their function we have broken them into three 
categories. 

Functions for SVM Training and Classification. 

 
There are three functions that implement the SVM- swSVM, swquad and 
swSVMclassify.  
 
The function that solves the QP for obtaining the SVM solution is swquad. 
 
The function swSVMclassify classifies test patterns, using the solution obtained 
previously by swquad.  
 
The function swSVM is like a main function that accepts as inputs the training 
patterns and their labels; the test patterns, the choice of the kernel and the sigma 
parameter (only needed for the RBF kernel). It calls swquad for solving the Quadratic 
Program to perform SVM separation and then calls swSVMclassify, which classifies 
the test patterns. If the data are two dimensional, swSVM also plots the training 
patterns, the margin and the decision boundary by calling swPlot. 
  

Plotting Related Functions 

 
The function swscatter does a scatter plot of the training patterns; and it outputs the 
patterns of category 1 as blue plus markers and the patterns of category 2 as red 
asterisk. (We assign y=1 to the patterns of category 1 and y= -1 to the patterns of 
category 2, but this can be reversed with no loss of generalization). The function 
swPlot is used to plot the training patterns and the decision boundary as well as the 
margin of the SVM. This function uses the outputs of the swquad function. The 
function swPlot calls the function swscatter. 

Helper functions 

 
There is one helper function swscale, which is called by other functions for scaling 
the training patterns before plotting the margin and decision boundaries. 
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A Sample Session of the swSVM  MATLAB software  
 
We will show an example of non-linear separation using the Gaussian RBF as the kernel. 
The data is the same used as in Figure 6. After obtaining the decision boundary, we will 
pick two arbitrary patterns as test patterns and classify them using the SVM e have 
obtained. 
 
In the lines that follow, we will use the Courier font to denote MATLAB commands 
and the Tohama font for comments. The output from MATLAB is in the Arial font 
 

% Load the data from the file nonlin.txt 
% The first two columns are the patterns and the third column contains the associated   labels for each 
% pattern. The label is 1 for patterns of class 1 and –1 for patterns of class 2. 
 
data=load('nonlin.txt'); 
 
%Put the Patterns into variable x and 
x=data(:,1:2); 

 
     % Put the class labels into the variable y 
   y=data(:,3); 

 
% Put choose RBF as the choice of kernel since we will perform non-linear separation 
kerneltype='rbf'; 
 
%Use Sigma =1 
sigma=1; 
  
% Let us perform a non-linear separation of the data using swquad 
[W0,b0, alpha]=swquad(x,y,kerneltype,sigma ); 
 
Optimization terminated successfully. 
The number of support vectors is 5 
The support Vectors are points number: 
 3 
 7 
 9 
16 
17 
 
% Now we will plot the decision boundary, the margin and the training patterns.   
% We use blue plus markers for class 1 patterns (y= 1) and red asterisk   markers for class 2 patterns 
% (y= -1) 
 
swPlot(x,y,'rbf',alpha, W0,b0 ,sigma); 
 
% Now let us pick two arbitrary points and try to classify them.   
hold on 
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Figure 7. Non-linear Separation using Gaussian RBF Kernel. Blue Plus markers are class 1 patterns. Red 
Asterisk markers are class 2 patterns. The two test patterns are shown as cyan and black filled circles. 
 
%Choose a point (pattern1) and Plot pattern 1 in Cyan colour on the existing plot 
pattern1= [-0.5,  -0.3]; 
scatter(pattern1(1),pattern1(2), 401,'c.') 
 
%Choose a point (pattern1) and Plot pattern 1 in Black colour on the existing plot 
pattern2= [0.3,  -0.8]; 
scatter(pattern2(1),pattern2(2), 401,'k.') 
 
%Now store pattern1 and pattern2 as the first and second rows of the matrix test 
test=[pattern1;pattern2]; 

 
% Classify test patterns 
class=swSVMclassify(alpha, b0, x,y,test,kerneltype,sigma) 
 
class = 
         -1.00 
          1.00 
 
We see that pattern 1 is classified as belonging to class 2 (i.e., label = -1) and pattern 2 as class 1 (label 
=1). From the positions of the cyan and black markers on the figure this is what one might expect. We 
could also have done the task of finding the SVM, plotting the training patterns and decision boundary; 
and classifying the test patterns by the use of the function swSVM. The results would be the same as 
calling swquad, swPlot and swSVMclassify in sequence as we have shown in the preceding lines. 
 
class =swSVM(x,y,kerneltype ,test,sigma) 
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Appendix 2: Formulation of the Quadratic Programme for the SVM 
 
 
We will derive the solution for the optimal canonical separating hyperplane when the 
data are linearly separable. We note that this hyperplane is a canonical separating 
hyperplane with the maximal margin. 
 
The margin 1( )M = − 2 wx x . 
Here the subscript w denotes the projection of the vectors 1 2and x x  onto the weights 
vector direction. Taking projections along   w, we get 

1 1

2

1 2

cos( ),

cos( ),
.

 

D

D
M D D

α
β

=

=
= −

2

x

x  

where α and β  are the angles between w and x1 and w and x2 respectively. We know that 
 

 

Substituting, this leads to 1 2 ,
T T

M −= x w x w
w

 and as x1 and x2 are support vectors 

satisfying 1,  1, 2T
j jy b j+ = =w x   

we have 1 1T b+ =w x , 2 1T b+ = −w x   

and finally we get 2M =
w

.        (A.1) 

We could also get this result using the fact that the distance D between a support vector 
x1 and a canonical separating line is equal to half the margin M and therefore 

2 1
2

T bMD
+

= = =
w x

w w
, from where 2M =

w
, as before. Therefore to maximise the 

margin, M, we need to minimise w  = 2 2 2
1 2 ... nw w w+ + . 

 
The optimal canonical separating hyperplane with the maximal margin will specify 
support vectors – that is the training points closest to the OCSH by     
    (A.2) 
where Nsv denotes the total number of  support vectors. 
At the same time, all training points must satisfy the following inequalities. 

[ ] 1, 1 .. T
j jy b j l+ = =w x         (A.3) 

2

2

c o s ( )

c o s ( )

α

β

=

=

T
1

1

T

x w
x w

x w
x w
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Thus to find the optimal separating hyperplane with the maximal margin, we need to 
minimize w , which is the same as minimising w 2, subject to (A.3). You will 
recognize that this is a standard non-linear optimisation problem with inequality 
constraints, which can be solved by the method of Lagrange multipliers. 
 

Let 
1

1( , , ) { [ ] 1}
2

l
T

i j j
i

L b y bα α
=

= − + −∑Tw w w w x      (A.4) 

 
where the iα 's are the Lagrange multipliers. The Lagrangian L in (a.4) is to be minimized 
with respect to w and b and maximized with respect to the non-negative iα 's. Instead of 
solving the problem in the primal space (the space of w and b) it is more insightful to 
solve the problem in the dual space (the space of the iα 's). Applying the Karush-Kuhn-
Tucker conditions, at the optimal solution (w0, b0, 0α ) the derivatives of the Lagrangian 
with respect to the primal variables will vanish, so that 
 

0
10

0,  or 
l

i i i
i

L yα
=

∂ = =
∂ ∑w x
w

        (A.5) 

 

10

0,  or 0
l

i i
i

L y
b

α
=

∂ = =
∂ ∑         (A.6) 

 
 
Applying the complementarity conditions, we have 
 

{ [ ] 1} 0,    1..T
i j jy b i lα + − = =w x         (A.7). 

 
Substituting (A.5) and (A.6) into (A.4) gives us 

1 1

1( )
2

l l

d i i j i j i j
i i

L y yα α α α
= =

= −∑ ∑ Tx x        (A.8) 

 
We need to maximise the dual Lagrangian ( )dL α  with respect to the non-negative iα 's 
 

iα >0, 1..i l=          (A.9) 
 
 
The dual Lagrangian ( )dL α  is expressed only in terms of the training data, and it depends 
on the scalar product of the input training patterns - xixj . This is very important because 
we will see that instead of using xixj  we will be able to use other types of inner products. 
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Our formulation is a standard Quadratic Programming problem. We can put this in matrix 
notation. 
 
Maximize ( ) 0.5 T T

dL α = − +α Hα f α        (QP.1) 
 
subject to  
 

0T =y α ,          (QP.2) 
 

≥α 0            (QP.3) 
 
 
where H denotes the Hessian matrix ( ,or  T

ij i j i j i j i jy y x x y y=H x x ) and f=1 is a unit 
vector; f= [ 1 1 1… 1]. 
 
After we find out the solution 0α  of the QP, we can find the parameters w0 and b, as 
follows 
 

0 0
1

,      1..            
l

i i i
i

y i lα
=

= =∑w x         (A.10) 

 

0
1 10 ,      1..

svN
T

s sv
s isv s

b s N
N y=

  
= − =     

∑ x w         (A.11) 

  
   
 
 
When usng a kernel function K, we will replace T

i jx x  by T( , ) = ( ) ( )i j i jK x x Φ x Φ x  in A.8 
and subsequently. 


